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Abstract
Due to advances in modern medicine, liver transplantation has revolutionised the 
prognosis of many previously incurable liver diseases. This progress has largely 
been due to advances in immunosuppressant therapy. However, despite the 
judicious use of immunosuppression, many liver transplant recipients still 
experience complications such as rejection, which necessitates diagnosis via 
invasive liver biopsy. There is a clear need for novel, minimally-invasive tests to 
optimise immunosuppression and improve patient outcomes. An emerging 
biomarker in this ‘‘precision medicine’‘ liver transplantation field is that of donor-
specific cell free DNA. In this review, we detail the background and methods of 
detecting this biomarker, examine its utility in liver transplantation and discuss 
future research directions that may be most impactful.
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Core Tip: Donor-specific cell-free DNA is a biomarker with promising clinical utility in 
liver transplantation. It demonstrates stereotypic dynamics in states of graft health, and 
is an early and accurate marker of acute rejection. This has been demonstrated in other 
solid-organ transplantations, where certain assays have progressed to commer-
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cialisation. Further studies examining donor-specific cell free DNA in liver 
transplantation, such as a randomised controlled trial or in combination with other 
assays, will assist with its translation into clinical practice. Ultimately, this emerging 
biomarker will need to be used in an integrated manner by experienced clinicians so as 
to improve patient outcomes.
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INTRODUCTION
Liver transplantation (LT) is a crucial treatment option for many patients with 
advanced liver disease. Since it was first performed in 1963[1], LT has evolved so 
significantly that it has revolutionised the prognosis of previously incurable 
conditions. Today, recipients have overall survival rates of 96% at one year, 71% at 10 
years and–remarkably–52% at 20 years post-LT[2]. In line with these excellent 
outcomes, the number of LTs performed each year continues to rise. In 2017, more 
than 32000 LTs occurred worldwide–representing 23.5% of the total organs 
transplanted and a 16.5% increase in LTs since 2015[3].

Long-term, the success of a LT depends on a fine balance: Adequately suppressing 
the immune system to avoid organ rejection, whilst maintaining it at a level that 
prevents complications and minimises side effects. Notably, the level of 
immunosuppression required post-LT can vary substantially between recipients. 
Whilst some patients are highly prone to rejection[4], others can successfully wean off 
immunosuppression entirely–achieving ‘‘operational tolerance’‘[5]. Despite the 
judicious use of immunosuppression, up to 27% of LT recipients still develop an 
episode of acute rejection and 68% encounter infective complications[6-8]. LT recipients 
also experience increased rates of malignancy, renal impairment and metabolic 
syndrome compared to the general population[9-11]. These issues can threaten graft and 
patient survival, impair quality of life and prove costly to manage[12-14].

Currently, the standard of care post-LT involves commencing recipients on empiric 
doses of immunosuppression, which are adjusted according to changes in liver 
function tests (LFTs), serum drug levels or the onset of an adverse clinical event. Whist 
LFTs are an extremely sensitive test for detecting organ injury, they are poorly specific 
for LT complications[15]. Moreover, no clear LFT thresholds exist that are diagnostic of 
rejection or reflective of its severity[16]. Similarly, there are no defined therapeutic 
ranges for serum calcineurin inhibitor (CNI) levels[17], as these have been shown to 
poorly correlate with clinical effects–particularly in LT[18]. Therefore, these tests often 
lead to a series of radiological and endoscopic investigations, that culminate in a liver 
biopsy to diagnose rejection. Not only is this process time-consuming and resource-
heavy, but liver biopsies are inherently subjective and invasive[19]. Approximately 1 in 
100 result in major complications and 2 in 1000 lead to patient death[20,21].

Clearly, innovative tools are needed to optimise immunosuppression and improve 
patient outcomes post-LT. Ideally, such tests should be both sensitive and specific for 
LT complications, as well as minimally invasive and cost-effective[22]. These tests also 
need to be easily accessible and rapidly performed, as changes in a LT recipient’s 
condition can occur quickly[23], and clinicians need to make prompt decisions in real 
time. To date, there has been considerable research into identifying biological markers 
that could enable clinicians to more precisely tailor immunosuppression regimens to 
individual patients[24-26]. One such emerging biomarker in this field of ‘‘precision 
medicine’‘ is that of circulating free DNA from the donor graft (i.e. ‘‘donor-specific 
cell-free DNA’‘). In this review, we detail the background and methods of detecting 
this biomarker, examine its utility in LT, and discuss future research directions that 
may be most impactful.
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DONOR-SPECIFIC CELL-FREE DNA
Background
Unencapsulated or ‘‘cell-free’‘ DNA was first discovered in human plasma by Mandel 
and Metais in 1948[27]. Following a resurgence of interest into its clinical potential in the 
1990s[28], the scientific community has since learnt much about the biology of cell-free 
DNA. The majority originates from haematopoetic cells such as leukocytes[29,30], and is 
released into the circulation during apoptosis and necrosis[31-33]. These fragments of 
DNA are then rapidly cleared from plasma by the liver, spleen and kidneys[34,35]. As a 
result, cell-free DNA has a short half-life of approximately 1.5 h[36,37]–rendering it a 
‘‘real-time’‘ marker of cellular injury. Subsequently, scientists identified that lower 
levels of this circulating free DNA were also being released during normal 
physiological turnover[38-40].

Given these characteristics, cell-free DNA has emerged as a useful biomarker in 
multiple clinical settings. This was particularly notable in those where a genetic 
difference could be exploited, such as oncology, obstetrics or solid-organ 
transplantation. In cancer patients, researchers isolated circulating free DNA 
characterised by mutations specific to particular malignancies[41-43]. This gave rise to the 
notion of a ‘‘liquid biopsy’‘ for diagnostic and management purposes[44-47]. Similarly, in 
the plasma of pregnant women, researchers detected fragments of DNA unique to the 
foetus[28], and subsequently analysed these for genetic conditions[48]. Today, ‘‘non-
invasive pre-natal testing’‘ has replaced the need for chorionic villus sampling with a 
simple blood test[49], which is commercially available throughout the world[50]. In solid-
organ transplantation, genetic differences become fundamentally intertwined. With 
the exception of an identical twin donor-recipient pair, this procedure places a unique 
genome within the recipient–theoretically creating the ideal environment for detecting 
circulating free donor DNA via minimally-invasive blood sampling. Moreover, this 
biomarker could plausibly reflect graft integrity at low levels, and cellular death when 
elevated. A particular focus has emerged regarding the dynamics of this DNA during 
rejection, given it is this element of solid-organ transplantation that currently 
necessitates invasive biopsies. This is particularly the case in LT, where routine 
biopsies are considered controversial–and often only performed if clinically 
indicated[51,52]. Clearly, a liquid biopsy could be revolutionary in this setting.

Methods of detection
In order to critically appraise studies examining the clinically utility of donor-specific 
cell-free DNA in LT, it is important to understand the scientific advancements that 
have enhanced its detection.

Y-chromosome specific sequences
The first group to detect circulating free donor DNA in transplant recipient plasma 
were Lo et al[53] in 1998. In their landmark study, they isolated fragments of donor 
DNA in the plasma of 36 liver or kidney transplant recipients–including six females 
who had received livers from male donors. In this subset of participants, the authors 
isolated genetic sequences unique to the Y-chromosome, which they amplified using 
polymerase chain reaction (PCR) and visualised using gel electrophoresis. In so doing, 
they provided ground-breaking data proving the concept of donor-specific cell-free 
DNA, depicted in Figure 1. However, this methodology was limited to male-to-female 
engraftments only–just as a subsequent Rhesus (Rh) gene quantitative PCR (qPCR) 
assay was restricted to positive-to-negative transplantations[54]. As such, a focus on 
identifying other genetic targets that differed more broadly between individuals 
subsequently emerged.

Next generation sequencing
The following decade, the advent of next generation sequencing (NGS) completely 
revolutionised gene discovery. By enabling massive genetic throughputs[55], multiple 
genetic loci that were highly heterogeneous within the population could now be 
identified. The most common of these were ‘‘single nucleotide polymorphisms’‘ 
(SNPs)–where DNA sequences differed by one adenine, thymine, guanine or cytosine 
molecule between individuals[56]. By using NGS to analyse multiple SNPs, researchers 
could now detect genetic sequences likely to differ between the vast majority of donor-
recipient pairs. The first group to achieve this were Snyder et al[57] in 2011, who 
analysed blood samples from heart transplant donors and recipients, and detected 
circulating free donor DNA using a genome-wide SNP assay[57]. Since then, three other 
groups have published more targeted NGS methodology in this field[58-60], two of which 
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Figure 1  The concept of donor-specific cell-free DNA in liver transplantation.

circumvented this need for baseline donor blood sampling by using computational 
techniques[59,60]. However, in clinical practice, NGS assays have several key limitations. 
Not only are they highly complex and expensive, but they can take up to seven days to 
process[57]–rendering them potentially futile as a real-time transplantation biomarker.

Droplet-digital polymerase chain reaction
Given this, an interest in developing more accessible, affordable and rapid assays 
arose. This coincided with the commercial availability of droplet digital PCR (ddPCR), 
which had a six hour turnaround time, and could more precisely quantify DNA than 
previous qPCR techniques[61]. Researchers began designing new ddPCR probes and 
primers to detect donor-specific sequences. Y-chromosome and SNP targets were 
revisited, but new sites included regions of the human leukocyte antigen (HLA) gene 
and ‘‘deletion insertion polymorphisms’‘ (DIPs). At a population level, HLA genes are 
characterised by high levels of heterogeneity[62]. However, as donor-recipient pairs are 
often HLA ‘‘matched’‘[63], this target is potentially problematic in transplantation. DIPs, 
conversely, remain a promising option–as these are regions of the genome 
characterised by the absence or presence of certain nucleotides, leading to common 
allelic differences between individuals[64]. Ultimately, understanding these 
methodologies highlights the relative complexity of genetic tests, compared to more 
standard biochemistry such as LFTs[65]. Accordingly, each assay for circulating free 
donor DNA requires validation, in order to establish its utility in the clinical setting.

STUDIES IN LIVER TRANSPLANTATION
Publications to date
A total of 12 publications have studied donor-specific cell-free DNA in LT, as 
summarised in Table 1. These studies differ in their size (n = 1-115), design and assay 
methodologies. However, they all demonstrate that this biomarker shows promise in 
monitoring graft health and detecting injury–especially when caused by acute 
rejection.

Fifteen years after Lo et al[53] first demonstrated the presence of Y-specific donor 
DNA fragments in LT recipient plasma, Beck et al[66] went on to establish three 
additional key findings. In their 2013 study, they used probe-based ddPCR to 
scrutinise a panel of 40 SNPs and detect donor-specific sequences in 10 newly 
transplanted and seven stable LT recipients. These fragments of donor DNA were then 
quantified in terms of relative abundance and expressed as a percentage of total cell-
free DNA. Firstly, Beck et al[66] observed high levels of circulating free donor DNA 
post-engraftment (approximately 90%), which fell exponentially and stabilised within 
10 d in recipients without complications. Secondly, this DNA was elevated (> 60%) in 
two newly transplanted patients with biopsy-proven acute rejection (BPAR), yet not in 
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Table 1 Publications examining donor-specific cell-free DNA in liver transplantation recipients (prior to census data of July 1st, 2020)

Ref. Year Assay method Genetic marker(s) Study design and sample size ‘‘Healthy’’ threshold Diagnostic accuracy

Lo et al[53] 1998 PCR and gel electrophoresis Y chromosome Prospective, cross-sectional (n = 8) - -

Beck et al[66] 2013 ddPCR(probe-based) SNP Prospective, cross-sectional (n = 10) and 
longitudinal (n = 7)

10% -

Macher et al[68] 2014 qPCR(probe-based) Y chromosome Prospective, longitudinal (n = 10) 150 ng/mL -

Macher et al[54] 2016 qPCR(probe-based) Rhesus gene Prospective, longitudinal (n = 17) - -

Kanzow et al[69] 2014 ddPCR(probe-based) SNP Retrospective, longitudinal (n = 1) 10% -

Oellerich et al[70] 2014 ddPCR(probe-based) SNP Prospective, longitudinal (n = 10) 10% -

Schütz et al[71] 2017 ddPCR(probe-based) SNP Prospective, longitudinal (n = 115) 10% AUC for BPAR 0.97

Goh et al[79] 2017 ddPCR(probe-free) DIP Prospective, longitudinal (n = 3) - -

Ng et al[80] 2018 NGS(targeted) Y chromosome Prospective, longitudinal (n = 2) 0.1 -

Goh et al[78] 2019 ddPCR(probe-free) DIP Prospective, longitudinal (n = 20) and cross-
sectional (n = 20)

898 copies/mL AUC for tBPAR 0.97

Ng et al[81] 2019 qPCR(probe-free) SNP Prospective, longitudinal (n = 2) 0.1 -

Ng et al[82] 2019 NGS(targeted) and automated 
electrophoresis

Y chromosome, DNA fragments < 145 
bp

Prospective, longitudinal (n = 11) 0.1, 0.6 (S/L fragments) -

PCR: Polymerase chain reaction; ddPCR: Droplet digital PCR; SNP: Single nucleotide polymorphism; qPCR: Quantitative PCR; DIP: Deletion insertion polymorphism; BPAR: Biopsy-proven acute rejection; tBPAR: Treated BPAR with 
rejection activity index > 3; NGS: Next generation sequencing; bp: Base pairs; S/L fragments: Short to long fragment ratio; AUC: Area under the receiver operating characteristic curve.

another with obstructive cholestasis. Notably, this DNA began to increase several days 
prior to LFTs in those cases with rejection. Thirdly, the authors identified a ‘‘healthy’‘ 
threshold of donor-specific cell-free DNA of < 10% in the stable LT recipients. 
Additional benefits of this assay included its same-day turnaround and lack of a need 
for donor blood sampling. However, its limitations included the use of PCR 
preamplification and post-PCR handling, which can introduce several forms of bias 
and pose a high contamination risk, respectively[67].

The next year, Macher et al[68] published a longitudinal study using qPCR to detect 
Y-specific DNA fragments in 10 gender-mismatched LT recipients. As with Beck 
et al[66], the authors also found that this circulating free donor DNA was elevated 
immediately post-LT, then rapidly decreased in recipients without complications and 
remained stable[68]. Macher et al[68] also identified a threshold reflective of organ 
health–however as their assay was one of absolute quantification, this was expressed 
as 150 ng/mL. The authors made the novel observation that these fragments of donor 
DNA were also elevated in recipients who experienced cholangitis and vascular 
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complications. Unfortunately, this study proved too small to examine the dynamics of 
this DNA in acute rejection, as no patients experienced this endpoint. As such, Macher 
et al[54] subsequently published an additional study in 2016. This time, they measured 
circulating free donor DNA by using qPCR to detect Rh-positive sequences in 17 Rh-
mismatched LT recipients. Here, in the patients who experienced BPAR, levels of 
donor-specific cell-free DNA were found to rise compared to those without 
complications. However, as these two qPCR assays targeted restrictive genetic 
differences only, they intrinsically had limited clinical utility.

Between 2014 and 2017, the Beck group published three additional studies using 
their more expansive SNP methodology[69-71]. The first of these was a case study, which 
described a LT recipient of a marginal graft, who had experienced multiple 
complications post-operatively–and retrospectively undergone donor-specific cell-free 
DNA analysis[69]. Kanzow et al[69] demonstrated that levels rapidly became elevated in 
the following settings: BPAR, traumatic liver haematoma and cytomegalovirus 
infection. They also made the pioneering observation that circulating free donor DNA 
subsequently fell post successful treatment of each complication. The authors 
concluded that this biomarker was useful for monitoring organ health.

Next, Oellerich et al[70] prospectively measured circulating free donor DNA and CNI 
levels in 10 receipts during the first month post-LT. They aimed to identify the 
minimum trough tacrolimus concentration that was associated with graft integrity. 
Using the pre-established healthy threshold of < 10%, the authors observed significant 
segregation and determined the lower limit of the therapeutic tacrolimus range to be 8 
ug/L. Although larger studies with longer follow up were still needed, Oellerich 
et al[70] postulated the assay could be useful in monitoring for graft injury in LT 
recipients whose immunosuppression was being weaned.

This unmet need was addressed by the third study, published by Schütz et al[71] In 
their multicentre prospective trial, donor-specific cell-free DNA was measured in 115 
LT recipients at seven timepoints during the first year post-LT, plus whenever 
rejection was suspected. The stereotypic exponential fall of this DNA was seen in 88 
stable recipients, who had a median level of 3.3%. In 17 recipients with BPAR, median 
levels were elevated at 29.6%. Moreover, this circulating free donor DNA was found to 
be an accurate and early marker of BPAR–with a superior area under the receiver 
operating characteristic curve (AUC) of 0.97 compared to LFTs (0.83-0.96), and levels 
increasing up to two weeks prior to diagnosis on liver biopsy. In patients with 
infective complications, median donor-specific cell-free DNA was slightly higher than 
in stable recipients, but lower than in BPAR (5.3%-5.7%) – similar to patterns seen by 
other authors[68,69]. In patients with cholestasis alone, levels remained < 10%[71]. On 
multivariate logistic regression, Schütz et al[71] found that this biomarker provided 
independent information regarding graft integrity.

Whilst the benefits of the Beck et al[72] assay they utilised prevailed, there were 
several limitations to this study[71]. These were highlighted by two cases, where 
patients had BPAR, but circulating free donor DNA levels remained < 10%. In the first 
patient, who had a marked leukocytosis, Schütz et al[71] acknowledged that this factor 
may have ‘‘masked’‘ the percentage of cell-free DNA from the donor present in 
recipient plasma, due to an increase in the denominator of total cell-free DNA. Indeed, 
expressing circulating free donor DNA in terms of relative abundance renders it 
innately susceptible to this form of error–including in other circumstances where cell-
free DNA increases such as infection[73], obesity[74] and exercise[75]. In the second patient 
with BPAR but circulating free donor DNA below the ‘‘healthy’‘ threshold, the authors 
attributed this to the fact that the rejection was only mild histologically, with a 
rejection activity index (RAI) of 1/9, and did not require treatment[71]. This case 
demonstrates the limited clinical utility of BPAR as an endpoint–compared to treated 
BPAR (tBPAR) of RAI ≥ 3, which is now widely utilised in clinical trials[76,77].

These limitations, however, were not present in the Goh et al[78] publication from 
2019. This group originally validated their probe-free ddPCR assay in 2017, when they 
successfully targeted a panel of nine DIPs and achieved absolute quantification of 
circulating free donor DNA in three LT recipients[79]. Two years later, they used this 
technique to examine 40 recipients divided into two cohorts[78]: Longitudinal (n = 20), 
who had donor-specific cell-free DNA measured at five timepoints during the first six 
weeks post-LT; and cross-sectional, who were either undergoing a liver biopsy at least 
one-month post-LT (n = 16), or stable and at least one-year post-LT (n = 4). The authors 
demonstrated findings in keeping with the aforementioned literature. In the 
longitudinal group, levels of circulating free donor DNA fell exponentially and 
stabilised in the 14 recipients without complications. Elevated levels of this DNA were 
observed in three recipients with tBPAR, but not in three with cholestasis alone. In the 
cross-sectional cohort, elevated levels of this DNA accurately identified six patients 
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with tBPAR, with an AUC of 0.97 that was again superior to LFTs. A healthy threshold 
of < 898 copies/mL was identified in the 14 cross-sectional patients without rejection 
and found to be reliable in the longitudinal cohort from day 14 post-LT onward. By 
using primer sets to hybridize across allelic breakpoints, Goh et al[78] had also 
eliminated the need for costly florescent probes. However, the assay called for a donor 
blood sample for optimal processing and the study was ultimately underpowered.

Most recently, Ng et al[80-82] pioneered the measurement of circulating free donor 
DNA in live donor LT (LDLT). These authors utilised different assays to detect the 
relative abundance of this DNA in paediatric recipients from day 0-60 post-LDLT. 
First, NGS was used to detect Y-specific sequences in two gender-mismatched 
LDLTs96. Next, a qPCR SNP assay was examined in two additional LDLT recipients97. 
In both publications, Ng et al[82] found that circulating free donor DNA exponentially 
fell and stabilised at < 0.1, as seen with the Beck et al[66] group. Finally, the initial NGS 
Y-specific assay was used in 7 gender-mismatched LDLTs to detect circulating free 
donor DNA, which was then profiled according to its fragment size[82]. Here, the 
authors made the innovative observation that donor DNA fragments were ‘‘short’‘ 
(105-145 bp), compared to the ‘‘long’‘ fragments of recipient DNA (> 160-170 bp). NGS 
and automated electrophoresis was then used to detect these short donor DNA 
fragments in four gender-matched LDLT recipients. The authors also noted that the 
ratio of short to long (S/L) fragments correlated with the circulating free donor DNA 
levels–and identified a healthy S/L fragment threshold of < 0.6. Interestingly, in the 
oncology and obstetric research settings, the fragments of DNA from tumour cells or 
from the foetus are also shorter (i.e. than those from non-malignant or maternal cells 
respectively) but the mechanism behind this is unclear[83,84]. Certainly, this Ng et al[80-82] 
fragment size-based assay was quicker and less restrictive than targeting the Y-
chromosome. However, its methodology was still slower (24 h) and more expensive 
than PCR. Furthermore, these three studies were limited by their small sample size of 
uneventful LDLTs[80-82]–precluding insights into the dynamics of their assays during 
complications.

DISCUSSION 
In summary, these studies show that donor-specific cell-free DNA is a biomarker with 
promising clinical utility in LT. It consistently demonstrates stereotypic dynamics in 
states of graft health[54,66,68,71,78]. As such, it could be used to rule out organ injury as part 
of a diagnostic workup post-LT. In the setting of acute rejection, circulating free donor 
DNA repeatedly outperforms LFTs in terms of both its discriminatory and timely 
detection of this LT complication[71]. Given this, it could be used to prompt early 
adjustments to therapy if rising in the setting of an immunosuppression 
wean–potentially preventing an episode of tBPAR. It could also be used to avoid a 
liver biopsy when present at low levels, enabling clinicians to observe recipients or 
investigate less invasively knowing tBPAR is highly unlikely. Ultimately, further 
studies are required to fully establish the potential of donor-specific cell-free DNA as a 
‘‘liquid biopsy’‘ in LT. In particular, a focus on identifying thresholds diagnostic of 
acute rejection, or reflective of its effective treatment, would be of high clinical value.

Reflecting on the biology underlying these results also yields further insights. 
Firstly, the researchers who discovered that circulating free donor DNA was more 
sensitive and specific for acute rejection than LFTs have postulated as to why this is 
the case[71,78]. Both Schütz et al[71] and Goh et al[78] concluded that, compared to LFTs, 
elevated levels of this novel biomarker reflect a relatively simple process–that of donor 
organ cellular death, releasing DNA into the recipient circulation. Conversely, 
bilirubin and the liver enzymes can rise due to a number of complex pathways. 
Secondly, other researchers have shown that levels of circulating free donor DNA also 
rise in infective and vascular complications post-LT[68,69,71]. Whilst these are also 
potential causes of graft cell death, other studies have indicated that inflammatory 
states might affect cell-free DNA levels[85]. Therefore, as a potential biomarker, these 
donor-specific assays need to be carefully interpreted by expert clinicians within the 
clinical context. Finally, in contrast to LFTs, circulating free donor DNA levels were 
noted in several studies to remain stable in the setting of cholestasis alone[66,71,78]. Whilst 
the reasons for this remain unclear, potential explanations could include the different 
vasculature of the biliary tree compared to hepatocytes, or its drainage system into the 
duodenum.

Additional issues that have been addressed include the impact of ‘‘blood 
microchimerism’‘ from donor leukocytes, or of blood transfusions from other/pooled 
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donors. In their landmark study, Lo et al[53] did not detect any haematopoietic donor 
cells in the recipients’ circulation. Subsequently, Schütz et al[71] analysed a subset of 12 
patients, and found donor leukocytes were either absent or barely present (0%-
0.068%). Both authors therefore concluded that blood microchimerism could be 
excluded as a confounding source of circulating free donor DNA[53,71]. Conversely, an 
additional case report by Goh et al[86] found that their assay was affected by blood 
transfusions. In this LT recipient, with no other evidence of graft injury, donor-specific 
cell-free DNA rapidly rose and fell post receiving fresh frozen plasma (FFP). As such, 
the authors suspected the FFP had temporarily confounded their results. However, 
given the short half-life of unencapsulated DNA, this could potentially be controlled 
for by performing assays for circulating free donor DNA several hours post such 
transfusions.

Ultimately, these LT studies represent just one aspect of the broader donor-specific 
cell-free DNA literature. In a recent systematic review, Knight et al[25] identified 47 
studies examining this biomarker in solid-organ transplantation (census date June 
2018). Most were in kidney (38.3%) or heart (23.4%) transplant recipients, and a 
smaller number were from the lung (10.6%) and kidney-pancreas (2.1%) setting. As 
with the LT literature, these studies varied in their design, size (n = 1-384) and assay 
methodologies. In five studies, the same assay was validated across multiple organs. 
In their narrative analysis, the reviewers found comparable results across multiple 
organs–with a few specific nuances. In all 21 studies that examined newly transplanted 
patients, circulating free donor DNA fell and stabilised by day 10. However, liver and 
lung recipients had higher baseline mean levels (2%-5%) than kidney and heart 
recipients (0.06%-1.2%)–potentially due to their larger graft size. Of the 41 studies that 
examined this biomarker in acute rejection, the vast majority observed levels to 
increase (97.5%), yet less than half reported diagnostic accuracy data (46.3%). 
Interestingly, of all organs studied, circulating free donor DNA rose to higher 
thresholds and with greater accuracy for BPAR in LT. Whilst no studies identified 
thresholds diagnostic of BPAR, several noted that levels returned to baseline post 
successful treatment. Overall, Knight et al[25] concluded that donor-specific cell-free 
DNA was a valid biomarker in all organ types.

Since then, the literature has continued to rapidly evolve. At the time of writing, 
more than 25 additional studies examining circulating free donor DNA had been 
published–including several from large cohorts of kidney (n = 107-189)[87,88], heart (n = 
241-773)[89,90] and lung (n = 106)[91] transplant recipients. Additional developments have 
included the publication of new guidelines regarding optimal laboratory processing of 
cell-free DNA[92]. There has also been an emerging interest in other cell-free genetic 
targets, such as hepatocyte-specific methylation markers[93,94], and mitochondria-
derived DNA (mDNA)[95,96]. Finally, some of these studies have led to the 
commercialisation of particular dsfDNA assays. AlloSure® and AlloMap® (CareDx, 
Inc., Brisbane CA) have been validated in large cohorts of kidney and heart transplants 
recipients respectively[89,97-99]. Prospera® (Natera, Inc., San Carlos CA) has also been 
validated in a renal transplant study[100]. Yet, as these three assays are all NGS-based, 
their routine use in clinical practice remains problematic. More recently, 
myTAIHEART® (TAI Diagnostics, Inc., Wauwatosa WI), which targets SNPs with 
qPCR to quantify circulating free donor DNA in relative abundance, was validated in 
heart transplant recipients[89,90]. However, as baseline thresholds and diagnostic 
accuracy of these assays can differ across organ types, they require further validation 
prior to their potential use in LT.

CONCLUSION
Given the rising number of LT recipients who require long-term monitoring[2,3], further 
donor-specific cell-free DNA research in this field could be of high clinical impact. 
Currently, there are two large prospective trials underway further examining 
AlloSure® in kidney transplantation (ClinicalTrials.gov Identifier: NCT03326076), and 
its use in conjunction with AlloMap® in heart transplantation (ClinicalTrials.gov 
Identifier: NCT03695601). Clearly, the commercialisation and larger scale analysis of 
circulating free donor DNA in LT is also required. Following this, next steps should 
include a randomised controlled trial (RCT) comparing standard of care post-LT to 
precision medicine additionally guided by changes in donor-specific cell-free DNA 
levels. Ideally, this RCT should also include a comparative cost analysis of these two 
models of care. Lastly, LT studies combining this biomarker with other novel tests 
would be particularly impactful–such as those quantifying immune function[77], or 
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machine learning algorithms[26]. Ultimately, the use of innovative tools in an integrated 
manner could enable clinicians to continue the legacy of exceptional progress and 
further improve patient outcomes post-LT.
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